1203. Sort Items by Groups Respecting Dependencies

QUESTION:

There are n items each belonging to zero or one of m groups where group[i] is the group that the i-th item belongs to and it’s equal to -1 if the i-th item belongs to no group. The items and the groups are zero indexed. A group can have no item belonging to it.

Return a sorted list of the items such that:

  1. The items that belong to the same group are next to each other in the sorted list.
  2. There are some relations between these items where beforeItems[i] is a list containing all the items that should come before the i-th item in the sorted array (to the left of the i-th item). Return any solution if there is more than one solution and return an empty list if there is no solution.

Example 1:

img

Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3,6],[],[],[]]
Output: [6,3,4,1,5,2,0,7]
Example 2:

Input: n = 8, m = 2, group = [-1,-1,1,0,0,1,0,-1], beforeItems = [[],[6],[5],[6],[3],[],[4],[]]
Output: []
Explanation: This is the same as example 1 except that 4 needs to be before 6 in the sorted list.

Constraints:

1 <= m <= n <= 3*10^4
group.length == beforeItems.length == n
-1 <= group[i] <= m-1
0 <= beforeItems[i].length <= n-1
0 <= beforeItems[i][j] <= n-1
i != beforeItems[i][j]
beforeItems[i] does not contain duplicates elements.

EXPLANATION:

终于来到了hard的题目,这道题目经过题意就可以看到也还是采用拓扑排序。但是此处有个问题:相同group的必须放在一起。那这我们就可以知道:不会出现交叉group出现的情况。那么就是必然是group进行排序的。此时,我们就可以知道:我们需要进行两步排序,首先对group进行排序,再对group中的每个item进行排序。
思路:

  1. 首先对item进行拓扑排序
  2. 对group进行拓扑排序
  3. 将item排序的填充到group中,这样group中的item就是已经排过序的
  4. 再对group按拓扑排序的顺序摆在一起

SOLUTION:

class Solution {
    public int[] sortItems(int n, int m, int[] group, List<List<Integer>> beforeItems) {
        // 计算item之间的拓扑
        int[] inDgree  = new int[n];
        ArrayList<Integer>[] beforeGraph = new ArrayList[n];
        for(int i = 0;i<n;i++) beforeGraph[i] = new ArrayList<>();
        for(int i = 0;i<beforeItems.size();i++){
            for(int child : beforeItems.get(i)){
                inDgree[i]++;
                beforeGraph[child].add(i);
            }
        }
        // 将group为-1的设置为单独的group
        int[] groupIndex = new int[n];
        for(int i = 0;i<group.length;i++) {
            if(group[i] == -1) group[i] = m++;
            groupIndex[i] = group[i];
        }

        // 计算group之间的拓扑
        int[] groupDgree = new int[m];
        ArrayList<Integer>[] groupGraph = new ArrayList[m];
        for(int i = 0;i<m;i++) groupGraph[i] = new ArrayList<>();
        for(int i = 0;i<group.length;i++){
            int toGroup = group[i];
            for(int child: beforeItems.get(i)){
                int fromGroup = group[child];
                if(fromGroup != toGroup){
                    groupGraph[fromGroup].add(toGroup);
                    groupDgree[toGroup]++;
                }
            }
        }
        // 对group和item进行拓扑排序
        List<Integer> groupResult = topoHelper(groupDgree,groupGraph);
        List<Integer> itemResult = topoHelper(inDgree,beforeGraph);
        // 如果有环,则直接退出
        if(groupResult.size()==0 || itemResult.size()==0) return new int[0];

        // 整理每个group的排序结果
        ArrayList<Integer>[] sortedGroups = new ArrayList[m];
        for(int i = 0;i<m;i++) sortedGroups[i] = new ArrayList<>();
        for(int i : itemResult)
            sortedGroups[group[i]].add(i);

        // 将排序结果按group排完的顺序填充
        int[] result = new int[n];
        int index =0;
        for(Integer grp: groupResult) {
            for (Integer i : sortedGroups[grp])
                result[index++] = i;
        }
        System.out.println(Arrays.toString(result));
        return result;
    }
    
    public static List<Integer> topoHelper(int[] dgree,ArrayList<Integer>[] graph){
        List<Integer> list = new ArrayList<>();
        Queue<Integer> queue = new ArrayDeque<>();
        for(int i = 0;i<dgree.length;i++) if(dgree[i]==0) queue.add(i);

        while (!queue.isEmpty()){
            int node = queue.poll();
            list.add(node);
            for(int child : graph[node]){
                dgree[child]--;
                if(dgree[child]==0) queue.add(child);
            }
        }
        return list.size()==graph.length ? list: new ArrayList<>();
    }
}
>