QUESTION:
There is an integer array nums that consists of n unique elements, but you have forgotten it. However, you do remember every pair of adjacent elements in nums.
You are given a 2D integer array adjacentPairs of size n - 1 where each adjacentPairs[i] = [ui, vi] indicates that the elements ui and vi are adjacent in nums.
It is guaranteed that every adjacent pair of elements nums[i] and nums[i+1] will exist in adjacentPairs, either as [nums[i], nums[i+1]] or [nums[i+1], nums[i]]. The pairs can appear in any order.
Return the original array nums. If there are multiple solutions, return any of them.
Example 1:
Input: adjacentPairs = [[2,1],[3,4],[3,2]]
Output: [1,2,3,4]
Explanation: This array has all its adjacent pairs in adjacentPairs.
Notice that adjacentPairs[i] may not be in left-to-right order.
Example 2:
Input: adjacentPairs = [[4,-2],[1,4],[-3,1]]
Output: [-2,4,1,-3]
Explanation: There can be negative numbers.
Another solution is [-3,1,4,-2], which would also be accepted.
Example 3:
Input: adjacentPairs = [[100000,-100000]]
Output: [100000,-100000]
Constraints:
nums.length == n
adjacentPairs.length == n - 1
adjacentPairs[i].length == 2
2 <= n <= 105
-105 <= nums[i], ui, vi <= 105
There exists some nums that has adjacentPairs as its pairs.
EXPLANATION:
- 首先明确, 只有开头和结尾的两个数是只有一个对象,中间的数都是有两个的或者更多, 比如123, 1,3就只有一个对象2, 而2则需要链接1,3
- 那么就相当于通过一个图, 去将线索整起来. 首先需要构建这个图, 这个图就是每个对象的对方,
- 再查找这个图中只有一个节点的, 要么是起点, 要么是终点. 这都没有关系.
- 通过这个点开始往前寻找, 将寻找过的点放在一个set里, 因为题目中说过, result是一个adjacent的.
- 通过set去去掉重复判断, 最终将result填充完整
SOLUTION:
class Solution {
func restoreArray(_ adjacentPairs: [[Int]]) -> [Int] {
var set = Set<Int>()
var result: [Int] = []
var dic: Dictionary<Int, Set<Int>> = [:]
for adjacentPair in adjacentPairs {
dic[adjacentPair[0], default: []].insert(adjacentPair[1])
dic[adjacentPair[1], default: []].insert(adjacentPair[0])
}
var current = dic.first!.key
for (key,value) in dic {
if value.count == 1 {
current = key
}
}
set.insert(current)
result.append(current)
while set.count != adjacentPairs.count + 1 {
var tmp = -1
for i in dic[current] ?? [] {
if !set.contains(i) {
tmp = i
break
}
}
set.insert(tmp)
result.append(tmp)
current = tmp
}
return result
}
}