230. Kth Smallest Element in a BST

QUESTION:

Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.

Note: You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.

Example 1:

Input: root = [3,1,4,null,2], k = 1
   3
  / \
 1   4
  \
   2
Output: 1

Example 2:

Input: root = [5,3,6,2,4,null,null,1], k = 3
       5
      / \
     3   6
    / \
   2   4
  /
 1
Output: 3

Follow up: What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?

EXPLANATION:

看完题目,寻找到第k小的数,那么就肯定会想到需要把二叉树摊平,那么摊平了又有好多种方法,既然是BST,那么就肯定是前序遍历才能将整个BST变成一个有序的数组或者集合。再通过这个集合查找一下就可以。同时我们又可以想,如果查找的是第一个,我们还有必要将整个树都摊平了吗,其实就是没有必要了,只要找到第k个就可以了。
思路:

  1. 定义两个值,一个用来表示摊平到第几个数,一个用来表示最后的结果
  2. 采用先序遍历的方式,遍历树
  3. 每次遍历到root时,就将索引进行+1
  4. 当索引为k的时候,表示已经遍历到了第k个小的值
  5. 当索引比k大时,则可以直接返回

SOLUTION:

class Solution {
    public  int kthSmallestResult = 0;
    public  int kthSmallestIndex = 0;
    public  int kthSmallest(TreeNode root, int k) {
        if(root==null) return 0;
        kthSmallest(root.left,k);
        kthSmallestIndex++;
        if(kthSmallestIndex == k)
            kthSmallestResult = root.val;
        if(kthSmallestIndex < k)
            kthSmallest(root.right,k);
        return kthSmallestResult;
    }
}
>