QUESTION:
We want to use quad trees to store an N x N
boolean grid. Each cell in the grid can only be true or false. The root node represents the whole grid. For each node, it will be subdivided into four children nodes until the values in the region it represents are all the same.
Each node has another two boolean attributes : isLeaf
and val
. isLeaf
is true if and only if the node is a leaf node. The val
attribute for a leaf node contains the value of the region it represents.
Your task is to use a quad tree to represent a given grid. The following example may help you understand the problem better:
Given the 8 x 8
grid below, we want to construct the corresponding quad tree:
It can be divided according to the definition above:
The corresponding quad tree should be as following, where each node is represented as a (isLeaf, val)
pair.
For the non-leaf nodes, val
can be arbitrary, so it is represented as *
.
Note:
N
is less than1000
and guaranteened to be a power of 2.- If you want to know more about the quad tree, you can refer to its wiki.
EXPLANATION:
这个题目耗费了好久的时间,但是最后还是没有特别的优雅。说一下自己的思路;
1.首先不管怎么样先对整个进行4等分的判断。
2.如果都相同,那么这个节点就是leaf节点,并且值也是可以算出来的。
3.如果不相同,那么就进行递归。
SOLUTION:
/*
// Definition for a QuadTree node.
class Node {
public boolean val;
public boolean isLeaf;
public Node topLeft;
public Node topRight;
public Node bottomLeft;
public Node bottomRight;
public Node() {}
public Node(boolean _val,boolean _isLeaf,Node _topLeft,Node _topRight,Node _bottomLeft,Node _bottomRight) {
val = _val;
isLeaf = _isLeaf;
topLeft = _topLeft;
topRight = _topRight;
bottomLeft = _bottomLeft;
bottomRight = _bottomRight;
}
};
*/
class Solution {
public Node construct(int[][] grid) {
Node root = new Node();
root.isLeaf = true;
root.val = grid[0][0] == 1;
constructHelper(grid,0,grid.length,0,grid[0].length,root);
return root;
}
public static void constructHelper(int[][] grid,int fromx,int tox,int fromy,int toy,Node node){
boolean topLeft = true;
int tmp = grid[fromx][fromy];
w:for(int i = fromx;i<(tox+fromx)/2;i++){
for(int j = fromy;j<(toy+fromy)/2;j++){
if(grid[i][j]!=tmp) {
topLeft = false;
break w;
}
}
}
Node topLeftNode = new Node();
node.topLeft = topLeftNode;
if(!topLeft){
constructHelper(grid,fromx,(tox+fromx)/2,fromy,(toy+fromy)/2,topLeftNode);
}else{
topLeftNode.isLeaf = true;
topLeftNode.val = tmp==1;
}
boolean topRight = true;
tmp = grid[fromx][(toy+fromy)/2];
w: for(int i = fromx;i<(tox+fromx)/2;i++){
for(int j = (toy+fromy)/2;j<toy;j++){
if(grid[i][j]!=tmp){
topRight = false;
break w;
}
}
}
Node topRightNode = new Node();
node.topRight = topRightNode;
if(!topRight){
constructHelper(grid,fromx,(tox+fromx)/2,(toy+fromy)/2,toy,topRightNode);
}else {
topRightNode.isLeaf = true;
topRightNode.val = tmp==1;
}
boolean bottomLeft = true;
tmp = grid[(tox+fromx)/2][fromy];
w: for(int i = (tox+fromx)/2;i<tox;i++){
for(int j = fromy;j<(toy+fromy)/2;j++){
if(grid[i][j]!=tmp){
bottomLeft = false;
break w;
}
}
}
Node bottomLeftNode = new Node();
node.bottomLeft = bottomLeftNode;
if(!bottomLeft){
constructHelper(grid,(tox+fromx)/2,tox,fromy,(toy+fromy)/2,bottomLeftNode);
}else{
bottomLeftNode.isLeaf = true;
bottomLeftNode.val = tmp==1;
}
boolean bottomRight = true;
tmp = grid[(tox+fromx)/2][(toy+fromy)/2];
w: for(int i = (tox+fromx)/2;i<tox;i++){
for(int j = (toy+fromy)/2;j<toy;j++){
if(grid[i][j]!=tmp){
bottomRight = false;
break w;
}
}
}
Node bottomRightNode = new Node();
node.bottomRight = bottomRightNode;
if(!bottomRight){
constructHelper(grid,(tox+fromx)/2,tox,(toy+fromy)/2,toy,bottomRightNode);
}else{
bottomRightNode.isLeaf = true;
bottomRightNode.val = tmp==1;
}
if(!topLeft || !topRight || !bottomLeft||!bottomRight){
node.isLeaf = false;
}
}
}