QUESTION:
You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.
Example 1:
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10]
Output: 1
Note:
You can assume that
0 <= amount <= 5000
1 <= coin <= 5000
the number of coins is less than 500
the answer is guaranteed to fit into signed 32-bit integer
EXPLANATION:
看到题目,想到了for循环暴力,知道肯定是TLE,果然,在第17个case的时候就TLE了,那就需要对当前的算法进行优化,优化点也很容易就可以想到:需要保存之前的状态,而不能每次都重复计算。那么如何保存之前的状态呢,可以采用动态规划的方式。创建一个大小为dp[amount+1]的数组,dp[j]表示总额为j的组合方案数。
如何找到状态转移方程呢,转移方程可以想到dp[j] = dp[j-coins[i]],比如第一个例子,5 = 1 +4 ,5 = 2+3,5 = 5+0 而4,和3可以再进行分解,那么可以得到dp[j] = sum(dp[j-coins[i]]),记得初始化dp[0] = 1,因为总额为0的结果只有1个。
SOLUTION:
class Solution {
public int change(int amount, int[] coins) {
int[] dp = new int[amount + 1];
dp[0] = 1;
for (int coin : coins) {
for (int i = coin; i <= amount; i++) {
dp[i] += dp[i-coin];
}
}
return dp[amount];
}
}