QUESTION:
On a N * N
grid, we place some 1 * 1 * 1
cubes that are axis-aligned with the x, y, and z axes.
Each value v = grid[i][j]
represents a tower of v
cubes placed on top of grid cell (i, j)
.
Now we view the projection of these cubes onto the xy, yz, and zx planes.
A projection is like a shadow, that maps our 3 dimensional figure to a 2 dimensional plane.
Here, we are viewing the “shadow” when looking at the cubes from the top, the front, and the side.
Return the total area of all three projections.
Example 1:
Input: [[2]]
Output: 5
Example 2:
Input: [[1,2],[3,4]]
Output: 17
Explanation:
Here are the three projections ("shadows") of the shape made with each axis-aligned plane.
Example 3:
Input: [[1,0],[0,2]]
Output: 8
Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]]
Output: 14
Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]]
Output: 21
Note:
1 <= grid.length = grid[0].length <= 50
0 <= grid[i][j] <= 50
EXPLANATION:
题目的意思就是在x,y的平面上摆放1*1的小方块。然后求三个方向的投影。那么就可以分成3个部分。
x方向的投影,其实就是所有的yz这个平面上的最大值。
y方向的投影,就是所有xz这个平面上的值。
z方向的投影,就是xy平面上的值。
遍历整个数组,进行计算就可以了。
SOLUTION:
class Solution {
public int projectionArea(int[][] grid) {
int sumX = 0;
int sumY = 0;
int sumZ = 0;
for(int i =0;i<grid.length;i++){
int tmpY = 0;
int tmpX = 0;
int tmpZ = 0;
for(int j=0;j<grid[i].length;j++){
tmpY = Math.max(tmpY,grid[i][j]);
tmpX = Math.max(tmpX,grid[j][i]);
if(grid[i][j]!=0) tmpZ++;
}
sumX+=tmpX;
sumY+=tmpY;
sumZ+=tmpZ;
}
return sumX+sumY+sumZ;
}
}