QUESTION:
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
EXPLANATION:
这其实就是一个求根公式:具体是这么演变的:
1+2+3+4+5+6+7…+k=n;
k(k+1)/2=n;
k^2+k-2n = 0;
求k的值,当然了,只需要取正值就可以了。
但是这个里面是有一个坑在的:
8.0*n是必须这样写的。
如果你写成8*n这样的话,会自动封箱成int类型,而这个值已经超过了int类型的范围,所以是一个不准确的值了。只有在8.0*n这样写,会自动封箱成double类型,是一个准确的值。
SOLUTION:
public class Solution {
public int arrangeCoins(int n) {
return (int)((Math.sqrt(1+8.0*n)-1)/2);
}
}