QUESTION:
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
EXPLANATION:
首先求出两边树的高度,然后进行对比。
这种方法的话会重复查询很多次子数的高度。所以还有第二种办法。
第二种是采用了后序遍历,如果有一个子树不是平衡二叉树,那么整个树也就不是了,所以第二种解法就避免了很多不必要的重复遍历。
SOLUTION:
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null) return true;
int left = treeHeight(root.left);
int right = treeHeight(root.right);
if(Math.abs(left-right)>1)
return false;
return isBalanced(root.left)&&isBalanced(root.right);
}
public int treeHeight(TreeNode root){
if(root == null)
return 0;
int left = treeHeight(root.left);
int right = treeHeight(root.right);
return left>right?left+1:right+1;
}
}
public class Solution {
public boolean isBalanced(TreeNode root) {
return treeHeight(root) != -1;
}
public int treeHeight(TreeNode root){
if(root == null)return 0;
int left = treeHeight(root.left);
if(left ==-1) return -1;
int right = treeHeight(root.right);
if(right == -1) return -1;
if(Math.abs(left-right)>1) return -1;
return Math.max(left,right)+1;
}
}