526. Beautiful Arrangement

QUESTION:

Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 ≤ i ≤ N) in this array:

  1. The number at the ith position is divisible by i.
  2. i is divisible by the number at the ith position.

Now given N, how many beautiful arrangements can you construct?

Example 1:

Input: 2
Output: 2
Explanation: 

The first beautiful arrangement is [1, 2]:

Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).

Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).

The second beautiful arrangement is [2, 1]:

Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).

Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.

Note:

  1. N is a positive integer and will not exceed 15.

EXPLANATION:

回溯算法的问题,具体的回溯算法定义可以参考这个百科,里面有一个通用代码块:

procedure bt(c)
  if reject(P,c) then return
  if accept(P,c) then output(P,c)
  s ← first(P,c)
  while s ≠ Λ do
    bt(s)
    s ← next(P,s)

就是回溯算法的基本使用方法。

一个一个位置的确定数字,如果满足的情况下,那么就继续确定下一个位置。直到超过了位置总数为止。

我们需要一个count来计算符合条件的解,一个list来记录已经使用的数字,这样就可以得到一个valid的方法。然后进行递归循环,得到最终的解的个数。

注意注释的地方,如果这个循环结束了,我们需要将之前添加恢复到未添加状态。

SOLUTION:

public class Solution {
    int count = 0;
    public ArrayList<Integer> countArrangementList = new ArrayList<>();
    public int countArrangement(int N) {
        countArrangementHelper(N,1);
        return count;
    }
    public void countArrangementHelper(int N,int index){
        if(index>N){
            count++;
            return;
        }
        for(int i = 1;i<=N;i++){
            if(isValid(index,i)){
                countArrangementList.add(i);
                countArrangementHelper(N,index+1);
                countArrangementList.remove(countArrangementList.size()-1);//在添加了之后,需要将添加的恢复到原来状态。
            }
        }
    }
    public boolean isValid(int index,int N){
        if((index%N==0 || N%index == 0) && !countArrangementList.contains(N))
            return true;
        return false;
    }
}
>