762. Prime Number of Set Bits in Binary Representation

QUESTION:

Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.

(Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)

Example 1:

Input: L = 6, R = 10
Output: 4
Explanation:
6 -> 110 (2 set bits, 2 is prime)
7 -> 111 (3 set bits, 3 is prime)
9 -> 1001 (2 set bits , 2 is prime)
10->1010 (2 set bits , 2 is prime)

Example 2:

Input: L = 10, R = 15
Output: 5
Explanation:
10 -> 1010 (2 set bits, 2 is prime)
11 -> 1011 (3 set bits, 3 is prime)
12 -> 1100 (2 set bits, 2 is prime)
13 -> 1101 (3 set bits, 3 is prime)
14 -> 1110 (3 set bits, 3 is prime)
15 -> 1111 (4 set bits, 4 is not prime)

Note:

  1. L, R will be integers L <= R in the range [1, 10^6].
  2. R - L will be at most 10000.

EXPLANATION:

这个题目的解法也就很简单了

1.获取到当前数字的一共有多少个1 (可以使用Integer的bitcount方法),当然也可以使用%1的方式,然后右移一位的方式。

2.得到了bitcount其实就已经很容易可以计算出是不是质数了。

然后计算一下就可以了。

SOLUTION:

class Solution {
    public int countPrimeSetBits(int L, int R) {
        int result = 0;
        for(int i = L;i<=R;i++){
            int bitCount = Integer.bitCount(i);
            if(isPrime(bitCount))
                result++;
        }
        return result;
    }
    public static boolean isPrime(int n){
        if (n <= 3) {
            return n > 1;
        }

        for(int i=2;i<=Math.sqrt(n);i++){
            if(n%i == 0)
                return false;
        }
        return true;
    }
}
>